Case Report
 

By Dr. Digvijay Sarma , Prof. Gabriel Rodrigues , Dr. Suresh Parameshwarappa , Dr. Raghunath Prabhu , Dr. Susmitha Suresh
Corresponding Author Prof. Gabriel Rodrigues
Kasturba Medical College, Manipal University, - India 576104
Submitting Author Prof. Gabriel Rodrigues
Other Authors Dr. Digvijay Sarma
General Surgery, Kasturba Medical College, Manipal University, - India

Dr. Suresh Parameshwarappa
General Surgery, Kasturba Medical College, Manipal University, - India

Dr. Raghunath Prabhu
General Surgery, Kasturba Medical College, Manipal University, - India

Dr. Susmitha Suresh
Pathology, Kasturba Medical College, Manipal University, - India

GASTROENTEROLOGY

Stromal tumour, Duodenum, Obstruction, Surgery, Chemotherapy, Followup

Sarma D, Rodrigues G, Parameshwarappa S, Prabhu R, Suresh S. Intestinal Obstruction Secondary To Duodenal Gastrointestinal Stromal Tumour. WebmedCentral GASTROENTEROLOGY 2010;1(9):WMC00582
doi: 10.9754/journal.wmc.2010.00582
No
Submitted on: 09 Sep 2010 09:53:12 PM GMT
Published on: 09 Sep 2010 10:03:00 PM GMT

Abstract


Though gastrointestinal stromal tumours are common, a duodenal stromal tumour is a rare entity. We present such a rare case with duodenal obstruction which caused a dilemma in the management of this patient. Though a Whipple’s operation was planned, intraoperatively, due to the pedunculated nature and free intraluminal mobility, resection of the polyp was done and histopathology was consistent with the diagnosis of a duodenal stromal tumour, which was reconfirmed with special stains/immunohistochemistry. Surgeons and pathologists should keep this rare primary tumour of the duodenum in mind as a differential diagnosis when examining/treating duodenal lesions, as a major surgical intervention can be avoided, cutting down on the cost, hospital stay, morbidity and mortality to the patient. A literature review and a discussion on the pertinent clinical, radiological, pathological and surgical aspects of stromal tumours have been discussed.

Introduction


Although stromal tumours are the most common gastrointestinal mesenchymal neoplasms, they are uncommon and duodenum is the least frequent site of occurrence (3-5%) [1]. Previously, they have been referred to as leiomyomas, leiomyoblastomas and leiomyosarcomas. The term   ‘stromal tumour’ was first coined by Schaldenbrand and Appelman in 1984 [2]. Duodenal gastrointestinal stromal tumours (GIST) are extremely rare with a variable clinical presentation. A palpable abdominal mass is the most frequent sign. Most cases are asymptomatic until they reach large size and may cause acute haemorrhage in the GI tract.  Obstructive jaundice may be seen when GIST is located near the ampulla of Vater [3]. Small asymptomatic lesions arising in the duodenum may be found incidentally during radiological investigations or laparotomy for other reasons [4]. Surgery remains the ‘gold standard’ for non-metastatic GISTs. Metastatic GISTs require chemotherapy and then might require surgery. Post-resection, the recurrence rate is around 35% [5]. A major diagnostic criterion of GISTs is expression of c-kit (CD117) and additional criteria include CD 34 and desmin positivity at IHC [6]. Due to nonspecific symptoms, delayed interval between the start of the lesion and clinical presentation, diagnosis and treatment becomes all the more difficult and challenging.

Case Report(s)


A 56-year-old male presented with history of pain abdomen, post-prandial vomiting with haematemesis (4 episodes) and maelena of one week duration. The pain was in the right upper abdomen and was of dull aching type and continuous. There was no history of jaundice. On general examination, pallor was present and per abdomen examination was unremarkable. A gastroduodenoscopy was done which showed a polypoidal lesion with a stalk at D1-D2 junction, which was biopsied (Illustration 1). The biopsy report was unremarkable. A clinical diagnosis of a periampullary carcinoma was made and a CT scan of abdomen was done to look for the size of the lesion, degree of luminal obstruction and for possible extraluminal spread and metastases, which revealed an intraluminal duodenal mass obstructing the lumen and no intra-abdominal metastases (Illustration 2). Patient underwent an exploratory laparotomy and was found to have a freely mobile, soft, fleshy tumour confined to the duodenal lumen. Hence, a duodenotomy and excision of the polypoidal mass with a 2 cm margin was done. Histopathology revealed ulcerated duodenal mucosa, with one focus showing a few crypts covered by fibrinous exudate with neutrophils, overlying a tumour composed of interlacing fascicles of spindle cells with elongated eosinophilic cytoplasm, wavy buckled nuclei few with intracytoplasmic eosinophilic globules, occasional mitoses (

Discussion


GISTs are rare tumours with an annual incidence of approximately 3000-6000/year in the United States and are most commonly seen in the seventh decade of life, although they may arise at any age. Stomach is the most frequent site of occurrence (45-65%), followed by the small bowel (15-25%), large bowel including the rectum (5-10%), oesophagus (5-10%) and duodenum (3-5%) [1]. GIST constitutes a distinct group of rare GI tumours that originate from the interstitial cells of Cajal which are regulators of gut peristalsis and normally express CD117, which is a product of the c-kit proto-oncogene that encodes a tyrosine kinase receptor, which regulates cellular proliferation in GISTs [2].
Most cases of GISTs are sporadic although few familial cases have been reported. In GIST cells, the c-kit gene is mutated in approximately 85% to 90% of cases. GIST cells that do not have a mutated c-kit ("wild-type") do have a mutation in another gene, PDGFR-α (platelet derived growth factor receptor alpha), which is a related tyrosine kinase. Mutations in the exons of 11, 9 and rarely 13 and 17 of the c-kit gene are known to occur in GIST. D816V point mutations in c-kit exon 17 are responsible for resistance to targeted therapy drugs like Imatinib mesylate [7].
The common presenting symptoms of duodenal GISTs are GI bleeding, vomiting, abdominal discomfort and mass per abdomen. These symptoms result from the fact that GISTs are typically fast growing neoplasms that often outgrow their blood supply and as a result they frequently develop a necrotic centre. When this fistulises to the enteric lumen or erodes a vessel, GI bleeding ensues that at times can be quite profuse. Fatigue due to anaemia may be present. Duodenal GISTs may present with obstructive jaundice [3].
Duodenal GISTs are most frequently diagnosed in the workup of symptoms not specific to these masses. Investigations like gastroduodenoscopy, barium meal, CT, MRI, endoscopic ultrasound and PET scan has been mentioned in the workup of these patients, amoung which the most useful is a CT scan. Not only does this demonstrate the size and anatomic location of the mass, it may also demonstrate features suggestive of stromal tumours (well vascularised, necrotic centre, heterogenous appearance) and provide evidence of metastatic disease. There is no standard staging system for GIST; however, the two most important factors in determining the risk of a GIST being cancerous are the size of the tumour and the mitotic count [4].
Surgery is the mainstay of treatment and the goal is complete tumour removal. At times the tumour may be large or spread into nearby organs and such patients will require Imatinib before surgery [5]. Targeted therapy has found a place in the treatment on GIST in which, faulty genes or proteins that contribute to cancer growth and development are targeted [8]. The United States Food and Drug Administration (FDA) have approved Imatinib, a cytostatic drug and a tyrosine kinase inhibitor for the treatment of GIST, which is now the drug of choice. It is usually given as either the only treatment or in combination with surgery (before or after surgery). The usual dose of Imatinib is 400 mg daily that can be raised to 800 mg daily. The other drug is Sunitinib, a tyrosine kinase inhibitor with anti-angiogenic properties and was approved in 2006 by the FDA for treating GIST when the tumour continues to grow even after treatment with Imatinib or in cases where it cannot be given [9]. Radiation therapy is not effective for treating the tumour itself, but may be used as a palliative treatment in painful metastasis [10].

Conclusion


GISTs, though rare, can present with varied symptoms from being silent to distant metastases. They are being increasingly picked up due to advances in IHC. Though surgery is the mainstay of treatment, chemotherapy plays a significant role in control and treatment of these tumours. Surgery is indicated in bowel obstruction, tumour bleed or to debulk the tumour. The survival in these patients is promising.

References


1. Mucciarini C, Rossi G, Bertolini F, Valli R, Cirilli C, Rashid I, Marcheselli L, Luppi G, Federico M. Incidence and clinicopathologic features of gastrointestinal stromal tumors. A population based study. BMC Cancer 2007; 7: 230.
2. Schaldenbrand JD, Appelman HD. Solitary solid stromal gastrointestinal tumors in von Recklinghausen's disease with minimal smooth muscle differentiation. Hum Pathol 1984; 15(3): 229-32.
3. Filippou DK, Pashalidis N, Skandalakis P, Rizos S. Malignant gastrointestinal stromal tumor of the ampulla of Vater presenting with obstructive jaundice. J Postgrad Med 2006; 52(3): 204-6.
4. Perez EA, Livingstone AS, Franceschi D, Rocha-Lima C, Lee DJ, Hodgson N, Jorda M, Koniaris LG. Current incidence and outcomes of gastrointestinal mesenchymal tumors including gastrointestinal stromal tumors. J Am Coll Surg 2006; 202(4): 623-9.
5. Pisters PW, Patel SR. Gastrointestinal stromal tumors: Current management. J Surg Oncol 2010 Jan 8. [Epub ahead of print].
6. Park SS, Ryu JS, Oh SY, Kim WB, Lee JH, Chae YS, Kim SJ, Kim CS, Mok YJ. Surgical outcomes and immunohistochemical features for gastrointestinal stromal tumors (GISTS) of the stomach: with special reference to prognostic factors. Hepatogastroenterology 2007; 54(77): 1454-7.
7. Lopes LF, Bacchi CE. Imatinib treatment for gastrointestinal stromal tumor (GIST). J Cell Mol Med 2010; 14(1-2): 42-50.
8. Raut CP, Morgan JA, Ashley SW. Current issues in gastrointestinal stromal tumors: incidence, molecular biology, and contemporary treatment of localized and advanced disease. Curr Opin Gastroenterol 2007; 23(2): 149-58.
9. Reichardt P. Optimal use of targeted agents for advanced gastrointestinal stromal tumors. Oncology 2010; 78(2): 130-40.
10. Ciresa M, D'Angelillo RM, Ramella S, Cellini F, Gaudino D, Stimato G, Fiore M, Greco C, Nudo R, Trodella L. Molecularly targeted therapy and radiotherapy in the management of localized gastrointestinal stromal tumor (GIST) of the rectum: a case report. Tumori 2009; 95(2): 236-9.

Source(s) of Funding


Source of funding: NIL

Competing Interests


Competing interests: NIL

Disclaimer


This article has been downloaded from WebmedCentral. With our unique author driven post publication peer review, contents posted on this web portal do not undergo any prepublication peer or editorial review. It is completely the responsibility of the authors to ensure not only scientific and ethical standards of the manuscript but also its grammatical accuracy. Authors must ensure that they obtain all the necessary permissions before submitting any information that requires obtaining a consent or approval from a third party. Authors should also ensure not to submit any information which they do not have the copyright of or of which they have transferred the copyrights to a third party.
Contents on WebmedCentral are purely for biomedical researchers and scientists. They are not meant to cater to the needs of an individual patient. The web portal or any content(s) therein is neither designed to support, nor replace, the relationship that exists between a patient/site visitor and his/her physician. Your use of the WebmedCentral site and its contents is entirely at your own risk. We do not take any responsibility for any harm that you may suffer or inflict on a third person by following the contents of this website.

Reviews
0 reviews posted so far

Comments
0 comments posted so far

Please use this functionality to flag objectionable, inappropriate, inaccurate, and offensive content to WebmedCentral Team and the authors.

 

Author Comments
0 comments posted so far

 

What is article Popularity?

Article popularity is calculated by considering the scores: age of the article
Popularity = (P - 1) / (T + 2)^1.5
Where
P : points is the sum of individual scores, which includes article Views, Downloads, Reviews, Comments and their weightage

Scores   Weightage
Views Points X 1
Download Points X 2
Comment Points X 5
Review Points X 10
Points= sum(Views Points + Download Points + Comment Points + Review Points)
T : time since submission in hours.
P is subtracted by 1 to negate submitter's vote.
Age factor is (time since submission in hours plus two) to the power of 1.5.factor.

How Article Quality Works?

For each article Authors/Readers, Reviewers and WMC Editors can review/rate the articles. These ratings are used to determine Feedback Scores.

In most cases, article receive ratings in the range of 0 to 10. We calculate average of all the ratings and consider it as article quality.

Quality=Average(Authors/Readers Ratings + Reviewers Ratings + WMC Editor Ratings)